Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1S)-1,2-O-Benzylidene-a-D-glucurono-6.3-lactone

Sarah F. Jenkinson,^a* Daniel Best,^a Alexander C. Weymouth-Wilson,^b Robert A. Clarkson,^b George W. J. Fleet^a and David J. Watkin^c

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, ^bDextra Laboratories Ltd, Science and Technology Centre, Whiteknights Road, Reading RG6 6BZ, England, and ^cDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England

Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 20 January 2009; accepted 22 January 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.068; data-to-parameter ratio = 8.2.

X-ray crystallographic analysis has established that the major product from the protection of D-glucoronolactone with benzaldehyde is (1S)-1,2-O-benzylidene- α -D-glucurono-6,3lactone, $C_{13}H_{12}O_6$, rather than the *R* epimer. The crystal structure exists as O-H···O hydrogen-bonded chains of molecules lying parallel to the *a* axis. The absolute configuration was determined by the use of D-glucuronolactone as the starting material.

Related literature

For related literature on the synthesis of protected D-glucuronolactone, see: Sheldrick et al. (1983); Macher et al. (1979); Shah (1969). For literature related to the use of acetonideprotected D-glucuronolactone as an intermediate in the synthesis of (a) other sugars, see: Bleriot et al. (1997); Dax et al. (1991); Ke et al. (2003); Masaguer et al. (1997); (b) imino sugars, see: Dax et al. (1990); (c) sugar amino acids, see: Bashyal et al. (1986, 1987); (d) many other bioactive targets, see: Kitahara et al. (1974); Austin et al. (1987); Witty et al. (1990); Shing & Tsui (1992); Yoda et al. (2002). For the original NMR studies on benzylidene-protected glucoronolactone, see Csuk et al. (1984).

Experimental

Crystal data

C13H12O6 V = 583.32 (2) Å³ $M_r = 264.23$ Z = 2Monoclinic, P2 Mo $K\alpha$ radiation a = 5.6329 (1) Å $\mu = 0.12 \text{ mm}^$ b = 7.8943 (2) Å T = 150 Kc = 13.3182 (3) Å $0.60 \times 0.50 \times 0.30 \text{ mm}$ $\beta = 99.9545 \ (9)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.88, T_{\max} = 0.96$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	1 restraint
$wR(F^2) = 0.068$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
1418 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
172 parameters	

8275 measured reflections

 $R_{\rm int} = 0.022$

1418 independent reflections

1341 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O7-H71\cdots O1^{i}$	0.86	1.97	2.811 (3)	165
Summer at my and as (i) a	1			

Symmetry code: (i) x - 1, y, z.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank the Oxford University Crystallography Service for use of the instruments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2760).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Austin, G. N., Fleet, G. W. J., Peach, J. M., Prout, K. & Son, J. C. (1987). Tetrahedron Lett. 28, 4741-4744.
- Bashyal, B. P., Chow, H. F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415-422
- Bashyal, B. P., Chow, H. F. & Fleet, G. W. J. (1986). Tetrahedron Lett. 27, 3205-3208.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bleriot, Y., Masaguer, C. F., Charlwood, J., Winchester, B. G., Lane, A. L., Crook, S., Watkin, D. J. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15135-15146.

Csuk, R., Mueller, N. & Weidmann, H. (1984). Monatsh. Chem. 115, 93-99.

Dax, K., Fechter, M., Gradnig, G., Grassberger, V., Illaszewicz, C., Ungerank, M. V. & Stuetz, A. E. D (1991). Carbohydr. Res. 217, 59-70.

- Dax, K., Gaigg, B., Grassberger, B., Koelblinger, B. & Stuetz, A. E. (1990). J. Carbohydr. Chem. 9, 479–99.
- Ke, W., Whitfield, D. M., Gill, M., Larocque, S. & Yu, S.-H. (2003). *Tetrahedron Lett.* 44, 7767–7770.
- Kitahara, T., Ogawa, T., Naganuma, T. & Matsui, M. (1974). Agric. Biol. Chem. 38, 2189–90.
- Macher, I., Dax, K., Inselsbacher, H. & Weidmann, H. (1979). *Carbohydr. Res.* **77**, 225–230.
- Masaguer, C. F., Bleriot, Y., Charlwood, J., Winchester, B. G. & Fleet, G. W. J. (1997). *Tetrahedron*, **53**, 15147–15156.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Shah, R. H. (1970). Carbohydr. Res. 12, 43–56.
- Sheldrick, B., Mackie, W. & Akrigg, D. (1983). Acta Cryst. C39, 1257-1259.
- Shing, T. K. M. & Tsui, H. C. (1992). J. Chem. Soc. Chem. Commun. pp. 432-434.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Witty, D. R., Fleet, G. W. J., Vogt, K., Wilson, F. X., Wang, Y., Storer, R., Myers, P. L. & Wallis, C. J. (1990). *Tetrahedron Lett.* 33, 4787–4790.
- Yoda, H., Nakaseko, Y. & Takabe, K. (2002). Synlett, pp. 1532-1534.

supplementary materials

Acta Cryst. (2009). E65, o414-o415 [doi:10.1107/S1600536809002876]

(1S)-1,2-O-Benzylidene-Q-D-glucurono-6,3-lactone

S. F. Jenkinson, D. Best, A. C. Weymouth-Wilson, R. A. Clarkson, G. W. J. Fleet and D. J. Watkin

Comment

D-Glucuronolactone **3** (Fig. 1), the only cheaply availably uronic acid, reacts with acetone in the presence of an acid catalyst to form the acetonide **4** (Sheldrick *et al.*, 1983). With only a single unprotected hydroxyl group, the lactone **4** provides convenient access to C-5 of *D*-glucose and has long been used as a versatile intermediate for the synthesis of other sugars (Bleriot *et al.*, 1997; Dax *et al.*, 1991; Ke *et al.*, 2003; Masaguer *et al.*, 1997), imino sugars (Dax *et al.*, 1990), sugar amino acids (Bashyal *et al.*, 1986, 1987) and many other bioactive targets (Kitahara *et al.*, 1974; Austin *et al.*, 1987; Witty *et al.*, 1990; Shing & Tsui, 1992; Yoda *et al.*, 2002). Reaction of **3** with benzaldehyde in the presence of zinc chloride gives a high yield of the benzylidene protected lactones in which the epimers are formed in a ratio of approximately 5:1 (Macher *et al.*, 1979; Shah, 1969). The configuration of the benzylidene acetal has previously been investigated by NMR experiments which suggest that **1**, which is the major product, has the 1,2(*S*)-configuration (Csuk *et al.*, 1984). The crystallographic analysis confirms that this assignment is correct and that the major product is **1**. Although as yet there have been no examples of the use of the benzylidene acetals **1** and **2** as synthetic intermediates, it is likely there will be cases where the use of a benzylidene group, which can be removed by hydrogenation, will have a significant advantage over the acetonide **4**, where strong acid must be used to remove the protecting group.

The title compound (Fig. 2) exists as alternating layers of hydrogen bonded chains of molecules lying parallel to the a-axis (Fig. 3, Fig. 4). Only classical hydrogen bonding has been considered. The absolute configuration was determined by the use of D-glucuronolactone as the starting material.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 419.5–421.5 K; $[\alpha]_D^{20}$ +67 (*c*, 1.0 in acetone) (Macher *et al.*, 1979).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

(15)-1,2-O-Benzylidene-*a*-*D*-glucurono-6,3-lactone

Crystal data	
$C_{13}H_{12}O_{6}$	$F_{000} = 276$
$M_r = 264.23$	$D_{\rm x} = 1.504 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1368 reflections
a = 5.63290 (10) Å	$\theta = 5-27^{\circ}$
<i>b</i> = 7.8943 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 13.3182 (3) Å	T = 150 K
$\beta = 99.9545 \ (9)^{\circ}$	Plate, colourless
$V = 583.32 (2) \text{ Å}^3$	$0.60 \times 0.50 \times 0.30 \text{ mm}$
Z = 2	

Data collection

Nonius KappaCCD area-detector diffractometer	1341 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 150 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 5.2^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$

(DENZO/SCALEPACK; Otwinowski & Minor,
1997) $T_{\min} = 0.88, T_{\max} = 0.96$ $k = -10 \rightarrow 10$ 8275 measured reflections $l = -17 \rightarrow 17$ 1418 independent reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.068$	Method = modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.04P)^2 + 0.13P],$ where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\rm max} = 0.009$
1418 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	1.1555 (2)	0.28908 (18)	1.09521 (9)	0.0317
C2	1.0013 (3)	0.2487 (3)	1.02461 (12)	0.0257
03	1.04981 (19)	0.2312 (2)	0.92986 (9)	0.0296
C4	0.8321 (3)	0.1868 (2)	0.85789 (12)	0.0263
C5	0.6246 (3)	0.2272 (2)	0.91452 (12)	0.0246
C6	0.7382 (3)	0.2089 (2)	1.02587 (12)	0.0259
O7	0.6540 (2)	0.3147 (2)	1.09703 (9)	0.0334
08	0.5720 (2)	0.40215 (18)	0.89088 (9)	0.0285
C9	0.6089 (3)	0.4347 (2)	0.79011 (12)	0.0265
C10	0.8011 (3)	0.3081 (2)	0.76761 (12)	0.0267
011	0.6942 (2)	0.2266 (2)	0.67619 (9)	0.0323
C12	0.4413 (3)	0.2413 (2)	0.66815 (12)	0.0269
013	0.4052 (2)	0.40025 (19)	0.71549 (9)	0.0307
C14	0.3210 (3)	0.2382 (2)	0.55862 (12)	0.0266
C15	0.1004 (3)	0.1573 (3)	0.53152 (14)	0.0320
C16	-0.0149 (3)	0.1563 (3)	0.43042 (15)	0.0379
C17	0.0921 (3)	0.2338 (3)	0.35636 (14)	0.0374
C18	0.3143 (3)	0.3125 (3)	0.38315 (14)	0.0368
C19	0.4288 (3)	0.3166 (3)	0.48437 (14)	0.0321
H41	0.8338	0.0667	0.8363	0.0325*
H51	0.4805	0.1554	0.8912	0.0314*
H61	0.7293	0.0846	1.0439	0.0312*
H91	0.6542	0.5570	0.7843	0.0323*
H101	0.9551	0.3623	0.7612	0.0324*

supplementary materials

H121	0.3793	0.1500	0.7071	0.0326*
H151	0.0235	0.1040	0.5830	0.0404*
H161	-0.1724	0.1016	0.4108	0.0448*
H171	0.0114	0.2344	0.2852	0.0453*
H181	0.3876	0.3631	0.3302	0.0450*
H191	0.5853	0.3725	0.5058	0.0382*
H71	0.5030	0.2905	1.0901	0.0522*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0237 (6)	0.0355 (8)	0.0344 (6)	0.0018 (5)	0.0009 (5)	-0.0001 (5)
C2	0.0234 (7)	0.0216 (7)	0.0319 (8)	0.0030 (7)	0.0044 (6)	0.0031 (7)
03	0.0193 (5)	0.0384 (7)	0.0316 (6)	0.0026 (5)	0.0051 (4)	0.0001 (6)
C4	0.0213 (7)	0.0265 (8)	0.0306 (8)	0.0011 (6)	0.0036 (6)	-0.0021 (7)
C5	0.0209 (7)	0.0227 (8)	0.0306 (8)	-0.0016 (7)	0.0058 (6)	-0.0001 (7)
C6	0.0233 (7)	0.0256 (9)	0.0295 (8)	-0.0013 (7)	0.0059 (6)	0.0014 (7)
07	0.0262 (6)	0.0428 (8)	0.0325 (6)	-0.0009 (6)	0.0088 (5)	-0.0056 (6)
08	0.0309 (6)	0.0268 (6)	0.0286 (6)	0.0060 (6)	0.0077 (5)	0.0009 (5)
C9	0.0291 (8)	0.0228 (8)	0.0276 (8)	0.0000 (7)	0.0050 (6)	-0.0006 (6)
C10	0.0226 (7)	0.0295 (9)	0.0286 (8)	-0.0018 (7)	0.0064 (6)	-0.0018 (7)
011	0.0252 (5)	0.0416 (7)	0.0302 (6)	0.0068 (6)	0.0047 (4)	-0.0076 (6)
C12	0.0251 (7)	0.0240 (8)	0.0319 (8)	0.0009 (7)	0.0061 (6)	-0.0012 (7)
013	0.0285 (6)	0.0316 (7)	0.0305 (6)	0.0082 (6)	0.0010 (5)	-0.0051 (5)
C14	0.0267 (7)	0.0231 (8)	0.0302 (8)	0.0019 (7)	0.0056 (6)	-0.0024 (7)
C15	0.0291 (8)	0.0301 (9)	0.0380 (9)	-0.0033 (8)	0.0095 (7)	-0.0071 (8)
C16	0.0298 (9)	0.0393 (11)	0.0432 (11)	-0.0038 (8)	0.0021 (8)	-0.0154 (9)
C17	0.0419 (10)	0.0367 (10)	0.0319 (8)	0.0061 (9)	0.0014 (7)	-0.0079 (9)
C18	0.0423 (10)	0.0343 (10)	0.0344 (9)	0.0016 (9)	0.0083 (8)	0.0017 (8)
C19	0.0314 (8)	0.0291 (9)	0.0363 (9)	-0.0040 (8)	0.0068 (7)	0.0011 (8)

Geometric parameters (Å, °)

O1—C2	1.207 (2)	C10—O11	1.416 (2)
C2—O3	1.344 (2)	C10—H101	0.984
C2—C6	1.518 (2)	O11—C12	1.4148 (19)
O3—C4	1.4628 (19)	C12—O13	1.435 (2)
C4—C5	1.530 (2)	C12C14	1.499 (2)
C4—C10	1.524 (2)	C12—H121	0.987
C4—H41	0.991	C14—C15	1.388 (2)
C5—C6	1.517 (2)	C14—C19	1.392 (3)
C5—O8	1.436 (2)	C15—C16	1.390 (3)
С5—Н51	0.995	C15—H151	0.969
C6—O7	1.406 (2)	C16—C17	1.384 (3)
С6—Н61	1.014	C16—H161	0.981
O7—H71	0.861	C17—C18	1.388 (3)
O8—C9	1.417 (2)	C17—H171	0.977
C9—C10	1.540 (2)	C18—C19	1.390 (3)
С9—О13	1.4088 (19)	C18—H181	0.963

С9—Н91	1.005	С19—Н191	0.983
O1—C2—O3	121.52 (15)	C9—C10—O11	104.69 (13)
O1—C2—C6	128.19 (15)	C4—C10—O11	111.49 (15)
O3—C2—C6	110.28 (13)	C9—C10—H101	113.3
C2—O3—C4	110.88 (12)	C4-C10-H101	111.0
O3—C4—C5	104.62 (13)	O11-C10-H101	111.9
O3—C4—C10	109.58 (14)	C10—O11—C12	107.49 (12)
C5—C4—C10	105.37 (13)	O11—C12—O13	104.83 (13)
O3—C4—H41	111.7	O11-C12-C14	110.64 (13)
C5—C4—H41	112.9	O13—C12—C14	111.54 (15)
C10-C4-H41	112.2	O11—C12—H121	110.1
C4—C5—C6	103.48 (12)	O13—C12—H121	108.5
C4—C5—O8	103.80 (13)	C14—C12—H121	111.0
C6—C5—O8	109.98 (14)	С12—О13—С9	108.59 (12)
C4—C5—H51	112.3	C12—C14—C15	119.63 (16)
С6—С5—Н51	115.8	C12—C14—C19	120.33 (15)
O8—C5—H51	110.7	C15—C14—C19	120.04 (16)
C2—C6—C5	102.55 (12)	C14—C15—C16	120.10 (18)
C2—C6—O7	109.20 (14)	C14—C15—H151	120.4
C5—C6—O7	117.93 (14)	C16-C15-H151	119.5
С2—С6—Н61	106.9	C15—C16—C17	119.99 (17)
С5—С6—Н61	107.1	C15-C16-H161	120.7
O7—C6—H61	112.2	C17—C16—H161	119.3
С6—О7—Н71	103.8	C16—C17—C18	119.95 (17)
С5—О8—С9	108.88 (13)	С16—С17—Н171	120.4
O8—C9—C10	106.84 (14)	C18—C17—H171	119.6
O8—C9—O13	113.45 (14)	C17—C18—C19	120.40 (18)
С10—С9—О13	104.58 (13)	C17-C18-H181	118.6
O8—C9—H91	109.2	C19-C18-H181	121.0
С10—С9—Н91	114.3	C14—C19—C18	119.51 (17)
О13—С9—Н91	108.5	C14—C19—H191	118.2
C9—C10—C4	104.06 (13)	C18—C19—H191	122.3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C4—H41···O1 ⁱ	0.99	2.37	3.200 (3)	141
C6—H61…O8 ⁱⁱ	1.01	2.49	3.289 (3)	135
C9—H91…O1 ⁱⁱⁱ	1.01	2.55	3.349 (3)	137
C15—H151····O11 ^{iv}	0.97	2.59	3.281 (3)	128
C16—H161····O13 ^v	0.98	2.51	3.350 (3)	143
O7—H71…O1 ^{iv}	0.86	1.97	2.811 (3)	165

Symmetry codes: (i) -x+2, y-1/2, -z+2; (ii) -x+1, y-1/2, -z+2; (iii) -x+2, y+1/2, -z+2; (iv) x-1, y, z; (v) -x, y-1/2, -z+1.

Fig. 2

Fig. 4